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PROBABILITY: AN INTRODUCTION 
 
In our day-to-day life, the term probability is a measure of one’s belief in the occurrence of a 
future event. This measure can range from 0 to 1, where 0 implying “impossible” and 1 
implying “certain” or “sure”. This is also expressed as the “chance” of  occurrence of the 
event. In this case the scale is from 0% to 100%. 
 
Consider the following events:  

1. {Heavy rain in Colombo tomorrow} 
2. {A tsunami occurring tomorrow in some part of Sri Lanka} 
3. {no sun-rise for tomorrow} 
4. {A death occurring somewhere in Sri Lanka tomorrow} 

      5.   {an accident reported in Colombo tomorrow}   
Can you assign reasonable probabilities to these events? 
 
Some reasonable answers: (1) .20 (possible, but less probable) 
(2) .00001 ( we now know that it is not impossible,  but is highly improbable) 
(3) 0 (it is an impossible event) 
(4) .9999 (very highly probable) 
(5) .55 ( probable event) 
 
[Note: The answer to question 2 would have been different if it was asked in 2003. We would 
definitely assign 0 thinking that it is an impossible event] 
 
Probability is always associated with “random” experiments, i.e. experiments with several 
possible outcomes but the outcome on any single trial  can not be predicted  in advance. In 
event 4 above, if the “experiment” is to observe the number of deaths reported in Sri Lanka 
tomorrow, the possible outcomes are: 0, 1, 2, 3, …., and so on. This is not an infinite 
sequence of numbers. It will be a finite sequence. 
 
How do we assign probabilities to (random) events? 
Is there a method (or methods) that we can follow?  
Answer is yes, but the method will depend on the way probability is interpreted. 
 
 
Interpretation of Probability 
 

1. Relative Frequency Interpretation: 
 

Probability of a single outcome of a random experiment is interpreted as the relative 
frequency of the outcome if the experiment were repeated a “large number of times” 
under “similar conditions”. 
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Shortcomings: (i) How large is “large”? (ii) No experiment can be repeated under 
similar conditions! 
 
Example: Suppose a coin was tossed 10,000 times and Heads (H) appeared 9000 
times. 
Now, the relative frequency of H  is 9000/10000 = 0.9 . Therefore, it is reasonable to 
assign 0.9 as the probability of H in any single toss for this coin. 
On the other hand, if Heads appeared say, 5010 times, then the relative frequency  of  
H is 5010/10000 = .501 ≈ .5 . 
Here, it is very reasonable to assume that the coin is balanced (and assign .5 for 
probability of H).  
 
Note: A natural phenomenon is that when the number of trials gets bigger and 
bigger the relative frequency of an outcome tends to converge to some constant 
value. This value is defined as the probability of that outcome in a single trial. 

 
 

2. Classical Interpretation: 
 

This is based on the concept of “equally likely” outcomes. Suppose a random 
experiment has n possible outcomes which are equally likely. [For example, a 
balanced die has 6 equally likely outcomes]. Then, each possible outcome has 

probability 
n
1 .  

 
Shortcomings: (i) How to assign probabilities to outcomes that are not equally 
likely? There is no systematic way! (ii) What if n is infinitely many? 

             
 

3. Subjective Interpretation: 
 

According to this, probability assigned to an outcome by a person depends on that 
person’s own belief and information about the likelihood of that outcome. [For 
example, if a gambler has information that a die is weighted so that “6” is more likely 

than any other number, he would assign a probability greater than 
6
1  for “6” and try 

his bets on “6”]. 
 
Shortcomings: (i) No objective basis for 2 or more scientists to reach a common 
agreement about the knowledge of an outcome. (ii) Can not assign probabilities 
consistently to infinitely many events. 
 
Example: Suppose neurosurgeon-A has a history of 180 successful cases of a type of 
brain surgery out of 200 that he carried out. If a new patient consults him and asks 
about the success rate for this type of  brain surgery, he would say 90%. This is 
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purely based on his information, for him! On the other hand,  neurosurgeon-B may 
say it is 75% ,simply based on his surgical history. 
  
 

 
SAMPLE SPACE AND EVENTS 
 
Definitions: 
 
The sample space associated with a (random) experiment is the set S of all possible 
outcomes. Individual outcomes in a sample space are called sample points.  These are also 
called simple events or elementary outcomes. 
 
 A discrete sample space contains either a finite or countably infinite number of sample 
points. 
 
An event A is any subset of the sample space S. A compound event consists of a collection 
of sample points whereas  a simple event consists of only a single sample point. If S is 
discrete, then every subset of S is an event. This may not be true for nondiscrete sample 
spaces which are not covered in this course. 
 
 
We can combine events to form new events using various set operations: 
(i) A B is the event that occurs if and only if A occurs or B occurs (or both). ∪
(ii) A B is the event that occurs if and only if A occurs and B occurs. ∩
(iii) )( AorAc is the complement of A, that occurs if and only if A does not occur. 
 
 
 
Definition: Mutually Exclusive (or disjoint) Events 
 
Two sets A and B are said to be mutually exclusive (or disjoint) if A∩B = Φ . That is, 
mutually exclusive sets have no sample points in common. 
 
Example: Consider an experiment of observing the blood type (with Rh factor) of a randomly 
picked person. 
Then, S = {A+, A-, B+, B-, O+, O-, (AB)+, (AB)-} 
Define A = {person has blood type A} and   
       B = {person has blood type B}. Then, A = { A+, A-} and B = { B+, B-}. Clearly A and B 
are disjoint events. 
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AXIOMS OF PROBABILITY 
  
 
Let S be the sample space associated with a random experiment. For every event A in S (i.e. 
for every subset of S) we assign a number, P(A), called the “probability of A” so that the 
following 3 axioms hold: 
 
1. P(A) ≥  0;      
2.  P(S) = 1  
3. If A1, A2, A3, …. form a sequence of pairwise mutually exclusive events in S (i.e. 

jiAA ji ≠=∩ ;0 ) then, 

∑
∞

=

=∪∪
1

321 )(......)(
i

iAPAAAP . 

 
*It can be shown that axiom 3 implies a similar result for any finite sequence. 
That is,  

∑
=

=∪∪∪∪
n

i
in APAAAAP

1
321 )()....( . 

Note: Above definition only states the conditions that must be satisfied by probabilities once 
they are assigned to events; it does not tell us how to assign probabilities! 
 
 
Properties of Probability Function, P 
 
Some theorems that follow directly from the above axioms: 
 

Theorem 1.  If  is the empty set, then P(Φ Φ ) = 0. 
 
Proof:  Let A be any set. Then, Φ=Φ∩A which implies that A and are disjoint, and 
also 

Φ
AA =Φ∪ . Now by axiom 3,  

)()()()( Φ+=Φ∪= PAPAPAP  which implies that P(Φ ) = 0. 
 

      Theorem 2.  If A  is the complement of an event A, then P( A ) = 1 – P(A). 
 

Proof: Note that the sample space S = AA∪  where A and A are mutually exclusive. 
Then, by axioms 2 and 3,  
1= P(S) = P( AA∪ ) = P(A) + P( A ) which implies that P( A ) = 1 – P(A). 
 

     Theorem 3. Let A be any event. Then, 1)( ≤AP .  
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   Proof:  By Theorem 2 we got P( A ) = 1 – P(A). But, by axiom 1, P( A )    since 0≥ A  is 
any event. Therefore, we get 1 – P(A)   which implies  0≥ 1)( ≤AP . 

 
      Theorem 4.  If  AB ⊂ , then )()( APBP ≤  
 
      Proof:   

 
 

 

 
 
 
 
 
 
 
 

)( BABA ∩∪=  
∴ )()()( BAPBPAP ∩+= , since disjoint 
∴ =− )()( BPAP 0)( ≥∩ BAP  
∴  )()( BPAP ≥

 
 
Theorem 5.  If A and B are any two events, then   )()()()( BAPBPAPBAP ∩−+=∪  
 
 
 
 
 
 
 
 
 
 

        Proof:  
 Note that   can beBA ∪
disjoint events. Now, by 

()()( APAPBAP +=∪
 

 
 
 
 
 
 

 

B

B

 written as A ∪
axiom 3  

[)() APB +=∩
S

A

1
 3
2
A
 S
)( BAAB ∩∪= which is a union of  2 

)]()( BAPBP ∩− . Hence the proof. 
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FINITE PROBABILITY SPACES 
 
Let S be a finite sample space, say, 1 2{ , ,..., }nS a a a= . A finite probability space is obtained 
by assigning to each point  a real number ia S∈ ip  called the probability of , [written 

] satisfying: 
ia

( )iP a
 

(i) each , and  0ip ≥
(ii) sum of ip ’s =1. 

 
The probability of any event A is the sum of the probabilities of the points of A.  ( )P A
 
EXAMPLE: 
 
Consider tossing 3 coins and recording the number of heads. The sample space is: 

{0,1, 2,3}S = . The following assignment of probabilities will give a valid probability space: 
 

(0)P = 1/12,   = 4/12,  = 5/12,  = 2/12. (1)P (2)P (3)P
 
Does it look surprising to you? (this can happen if the coins are not fair!). 
 
 
CONDITIONAL PROBABILITY AND THE MULTIPLICATION RULE 
 
Definition: CONDITIONAL PROBABILITY 
 
Let A and B be two events in a sample space S. 
Conditional probability of A, given that B has occurred, is denoted by P(A | B) and is defined 
as 
 

P(A | B) = 
)(

)(
BP

BAP ∩ , provided P(B) > 0 (otherwise, it is not defined) 

 

[similarly, P(B | A) = 
)(

)(
AP

ABP ∩ = 
)(

)(
AP

BAP ∩ , provided P(A) > 0.] 

 
P(A | B)  in a certain sense measures the relative probability of A with respect to the reduced 
space B.   
 
 
 
Properties of the conditional probability function 
 
Let A, B, C, and D be arbitrary events in a sample space S with P(D) > 0. Then, 
 

 6



1.   1)|(0 ≤≤ DCP
2.  P(S | D) = 1 
3.  P( , if A and B are disjoint. )|()|()| DBPDAPDBA +=∪
4.  P( )|()|()|()| DBAPDBPDAPDBA ∩−+=∪ , in general. 
5.  P( )|(1)| DCPDC −=  
 
EXAMPLE 
 
The following table shows the percentage passing or failing a job competency exam listed 
according to sex, for a certain population of employees. 
 
 Male 

(M) 
Female (F)   

Pass 
(A) 

24 36 60 

Fail 
( A ) 

16 24 40 

  40 60 100
 

Now, P( M A∩ ) = 24 / 100 ;  P(A) = 60 / 100;  P(M |A) = (
( )

P M A
P A

)∩ = 24 / 60 . 

P(A | F) = ( )
( )

P A F
P F
∩ = 36 /100

60 /100
= 36 / 60 = “passing rate among females”,  and so on. 

 
 
 
 
MULTIPLICATION RULE 
 
For any two events A and B in S with P(A) > 0 and P(B) > 0, 
 
P(A = P(A). P(B | A) = P(B). P(A | B)  – follows directly from definition. )B∩
 
 
Extension to many:  
 

)....|().....|().|().()....( 12121312121 −∩∩∩=∩∩∩ kkk AAAAPAAAPAAPAPAAAP  
 
 
EXAMPLE 
 
A bunch of keys has n similar keys, and only one of which will permit access to a room. 
Suppose a person chooses a key at random and tries it. If it does not work, he removes it 
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from the bunch and randomly picks another one, proceeding in this manner until he finds the 
correct key. 
 
Define events   A1 = { choose correct key at the 1st try} and   
 
A2 = {choose correct key at the 2nd  try}. 
 
 
(i) P (open door in the 1st try) = P(A1) = 1/n. 
 
(ii) P(open door in the 2nd try) = P ( 1 2A A∩ )        
 
= P( 1A ). P (A2 | 1A ) by the multiplication rule.              
 

Where P( 1A ) = 1n
n
− ,  and    P (A2 | 1A ) = 1

1n −
 

 
Therefore,   P(open door in the 2nd try) = 1/n. 
 
[Can you guess the answer for opening door in the 5th try, say?] 
 
 
 
TREE DIAGRAMS 
 
 
A tree diagram is a convenient tool for describing a sequence of (random) experiments in 
which each experiment has a finite number of outcomes with given probabilities. 
 
 
EXAMPLE 
 
Suppose we have 3 boxes as follows: 
 
Box 1 has 5 white balls and 3 black balls; 
Box 2 has 10 white balls and 5 black balls; and 
Box3 has 6 white balls and 2 black balls. 
 
If we pick a box at random, and draw a ball at random, what is the probability, that the ball 
is white? that the ball is black? 
 [Here, if you know the outcome of the first experiment, i.e. selecting a box, then the answer 
is straight forward. But since it’s random, the outcome is not known in advance! A tree 
diagram showing all possible outcomes, can help us find the answer]. 
 
 
In the first experiment, there are 3 outcomes: {box 1, box 2, box 3}. 
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In the second, box 1 has 2 outcomes: { W, B}; box 2 has 2 outcomes: {W, B}; and box 3 has 
2 outcomes: {W, B}. 
This process looks like branches of a tree! The following is a tree diagram to describe the 
sequence. The probability of each outcome is shown along the corresponding branch. 
 
 
 

Event  
(1 ∩W)

(1 ∩B) Box 1 

Box 3 
W

W

B

W
B

B

Box 2 

 
 
 
 
 (2 ∩W)  
 (2 ∩W)  

(3 ∩W)  
 

(3 ∩W)  
 
Now, to calculate the probability of any event in the last column, simply multiply the 
probabilities along its path. 
 
For example, probability of selecting Box 1 and  then a White ball = P(1 ) =  W∩
(1/3). (5/8) = 5/24. 
Similarly, P( ) = (1/3). (2/3) = 2/9. 2 W∩
 
P( ) = (1/3). (3/4) = ¼. 3 W∩
 
Now since there are 3 mutually exclusive paths which lead to a White ball, the probability 
that the ball is White is the sum of the probabilities of these 3 paths. 
 
Notationally, 
 
P( W ) = P( (1 ) ( ) (3W∩ ∪ 2 W∩ ∪ W∩ )) = 5/24 + 2/9 + ¼ = 49/72. 
 
Similarly, P(B) = 23/72.  
(This is obtained by using the complement rule, or by the formula.) 
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BAYES’ THEOREM 
 
Suppose the events A1, A2, …, An form a (disjoint) partition of a sample space S; i.e. these 
events are mutually exclusive and their union is S. Let B be any other event in S.  
(See the diagram) 
 

B 
• 
• 

• 
An

A5
A4

A3

A2 

A1  S 
 
 
 
 
 
 
 
 
 
Then,  B = S∩B = (A1∪A2 … An) ∪ ∪ ∩B  
  
              = (A1 B) ∪ (A2 B) …∪ (An ∩ ∩ ∪ ∩B)   
 
where Ai∩B , for i = 1, 2, …, n, are also mutually exclusive. Therefore, 
 

P(B) = . 
1

( )
n

i
i

P A B
=

∩∑
 
Now, if one is interested in finding the conditional probability of Ai given B,  
we can write 
 

( )( | )
( )
i

i
P A BP A B

P B
∩

=  = ( ) ( | )
( )

iP A P B A
P B

i  (by the multiplication rule). 

 
Now, if we replace P(B) by the result given above, we obtain one of the most important 
theorems in probability, namely, Bayes’ theorem: 
 
 
BAYES’ THEOREM 
 
Suppose A1, A2, …, An form a partition of S and B is any event in S. Then, 
 

1

( ) ( | )( | )
( ) ( | )

i i
i n

j j
j

P A P B AP A B
P A P B A

=

=

∑
. 
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EXAMPLE 
 
A bowl contains w white balls and b black balls. One ball is selected at random from the 
bowl, its color noted, and it is returned to the bowl along with n additional balls of the same 
color. Another single ball is randomly selected from the bowl (now containing  
w + b + n balls) and it is observed that the ball is black. Show that the (conditional) 

probability that the first ball selected was white is 
nbw

w
++

. 

 
Solution: 
 
Let A1 = {first ball is white} and A2 = {first ball is black}. Then,  
A1, A2  is a (disjoint) partition of S and, 

P(A1) = 
bw

w
+

 and P(A2) = 
bw

b
+

. 

Let B = {second ball is black}. We need to find P(A1 | B). 

Now, P(B | A1) = 
nbw

b
++

 and P(B | A2) = 
nbw

nb
++

+ . 

 
Using Bayes’ theorem, we have 
 

1 1
1

1 1 2 2

( )( )( | ) ( )( | )
( | ) ( ) ( | ) ( ) ( )( ) ( )(

b w
P B A P A w b n w bP A B b w b n bP B A P A P B A P A

w b n w b w b n w b

+ + += =
++ + )

+ + + + + +

 

which is 
nbw

w
++

. 

 
 
 
EXAMPLE 
 
A diagnostic test for a disease is said to be 90% accurate in that if a person has the disease, 
the test shows positive with probability 0.9 . Also, if a person does not have the disease, the 
test shows negative with probability 0.9 . Suppose only 1% of the population has the disease 
in question. If a person is chosen at random from the population and the diagnostic test 
shows positive, what is the conditional probability that he does, in fact, have the disease? 
[Are you surprised by the answer? Would you call this diagnostic test reliable?]. 
 
Solution: 
 
  Define the events, D = {person has the disease}.  Then D  = {does not have}. 
 
Note that D and D  form a partition of S. 
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Also P(D) = .01 and P( D ) = 1 - .01 = .99 . 
Let  A = {test shows positive}. Then, A  = {test shows negative}. 
Now, P(A | D) = .9 ; P( A | D ) = .9. Therefore, P(A | D ) = 1 - P( A | D ) = .1 
We need, P(D | A). 
 
Using Bayes’ theorem,  

12
1

)99)(.1(.)01)(.9(.
)01)(.9(.

)()|()()|(
)()|()|( =

+
=

+
=

DPDAPDPDAP
DPDAPADP . 

 
 
 
 
 
INDEPENDENT EVENTS 
 
An event B is said to be independent of an event A if the probability that B occurs is not 
influenced by whether A has occurred or not.  In other words, B is independent of A if  
P(B) = P(B | A). Similarly, A is independent of B if P(A) = P(A | B). 
 
Now, = P(B | A). P(A) = P(A | B). P(B)       (by the multiplication rule) (P A B∩ )

)
 
Consider (i)  P(B) = P(B | A). This implies  (P A B∩ = P(A) . P(B).  
               (ii) P(A) = P(A | B). This again implies (P A B)∩ = P(A) . P(B).   
This leads to a formal definition of independence. 
 
 
DEFINITION 
 
Events A and B are independent if and only if (P A B)∩ = P(A) . P(B).   
 
(By saying A and B are independent, we mean that A is independent of B, and B is 
independent of A). 
 
 
EXTENSION TO THREE EVENTS 
 
Events A, B, and C, are (mutually) independent if and only if they are pair-wise 
independent, and in addition, if ( ) ( ). ( ).P A B C P A P B P C( )∩ ∩ = . 
 
Note: The definition of pair-wise independence is the one for two events given above. 
 
 
Note: If A and B are independent, it can be shown that A and B , A  and B,  A  and B , are all 
independent! 
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EXAMPLE 
 
Let a fair coin be tossed three times. Then the (equiprobable) sample space  is 
 
S = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}. 
 
Define the events  
 
A = {first toss is H}; B = {second toss is H}; and C = {at least two H’s in a row}. Then, 
 
A = { HHH, HHT, HTH, HTT};  P(A) = 4/8 = ½ . 
 
B = { HHH, HHT, THH, THT};  P(B) =  4/8 = ½ . 
 
C = { HHH, HHT, THH};  P(C) = 3/8. 
 
A B∩ = {HHH, HHT};  P( A B∩ ) = 2/8 = ¼ . 
 
A C∩ = {HHH, HHT};  P( ) = 2/8 = ¼ . A C∩
 
B C∩ = {HHH, HHT, THH}; P( B C∩ ) = 3/8. 
 
Now, P(A). P(B) = ½ . ½ = ¼  = P( A B∩ ). So, A and B are independent. 
 
P(A). P(C) = ½ . 3/8 = 3/16  P(≠ A C∩ ). So, A and C are dependent.  
 
P(B). P(C) = ½ . 3/8 = 3/16  P(≠ B C∩ ). So, B and C are dependent.  
 
 
EXAMPLE 
Let a fair coin be tossed twice. Then the sample space is 
 
S = {HH, HT, TH, TT}. 
 
Define the events 
 
A = {H on the first toss}; B = {H on the second toss}; and C = {H on exactly one toss}. 
 
Then,  
A = {HH, HT}; B = {HH, TH}; and C = {HT, TH}. 
 
It is easy to verify that A, B, and C are pair-wise independent, but not mutually 
independent! 
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INDEPENDENT TRIALS 
 
Consider the above example of tossing a fair coin three times. By saying fair coin, we mean 
that  P(H) = ½  and P(T) = ½  in each toss.  
 
These three trials can be assumed independent since the outcome on any one trial has no 
influence on the outcome on any other trial. Therefore, the probability of any outcome of the 
experiment can be written as follows: 
 
P(HHH) = P(H). P(H). P(H) = ½. ½ . ½ = 1/8,  
 
P(HHT) = ½ . ½ . ½ = 1/8, and so on. In general, for n independent trials, 
 P((s1, s2, …, sn)) = P(s1). P(s2). … P(sn). 
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