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Types of Proof

1. Direct Proof

Let us prove that for any positive real number x, x3 + x > 0.
Proof:  
Suppose x is a positive real number; i.e. x > 0.  
Then x3 + x = x(x2 + 1) > 0 (Since x > 0 and x2 + 1 > 0).
Therefore for any positive real number x, x3 + x > 0.
This is a direct proof.  
Let us now look at an indirect proof.
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Types of Proof continued…...

(II)Indirect Proof.

Let us prove that for any real number x,  
x3 + x > 0 ⇒ x > 0.
We have to prove that when x3 + x > 0 is true, then x > 0  is 
also true.  We prove this indirectly.  We assume that x ∈ R 
and x3 + x > 0 is true but x > 0 is false.  We show that this 
cannot be so by obtaining a contradiction.From this we get, 
for any x ∈ R, if x3 + x > 0 is true, then x > 0 is true.
Let us now give the proof.
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Types of Proof continued…...

Proof: Suppose x ∈ R and x3 + x > 0.  Suppose x > 0 is false. 
Then x ≤ 0.  
When x = 0, x3 + x = 0.  But x3 + x > 0.  Therefore x ≠ 0. 
Therefore x < 0 ( since x ≤ 0 and x ≠ 0). 
Then, x3 + x  = x(x2 + 1) < 0 ( Since x < 0 and x2 + 1 > 0).  
We get a contradiction ( Since x3 + x > 0 and x3 + x < 0).
Therefore, when x ∈ R and x3 + x > 0, x > 0.  
Therefore, for any x ∈ R, x3 + x > 0 ⇒ x > 0 //

A proof such as this is called a proof by contradiction.
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Types of Proof continued…...

We give another indirect proof of the above.  It is called a 
contrapositive proof.  
We have to prove that for any real number x, x3 + x > 0 ⇒ x > 0.  
Now we know that p ⇒ q is equivalent to (~ q) ⇒ (~ p). So we can 
prove the above by proving x ≤ 0 ⇒ x3 + x ≤ 0.
This is called a contrapositive proof.  
Let us now give the proof.
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Proof:  Suppose x ∈ R.  Suppose x ≤ 0.  When x  = 0, x3 + x = 0.  
Therefore when x  = 0, x3 + x ≤ 0.  
When x < 0 we have:
x3 + x = x(x2 + 1) < 0 ( Since x < 0 and x2 + 1 > 0).  
Therefore x3 + x < 0.  
Therefore x3 + x ≤ 0. /
Therefore, for any x ∈ R, x ≤ 0 ⇒ x3 + x ≤ 0.

Therefore, for any x ∈ R, x3 + x > 0 ⇒ x > 0.
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Counter Example

Consider the proposition, ‘for any positive integer n, 11n + 5 is not 
a prime number’.  This proposition is false.  To show this we give a 
counter example; i.e., we give an example of a positive integer n 
such that 11n + 5 is prime. 
When n = 1, 11n + 5 = 16 is not prime.  When n = 2, 11n + 5 = 27
is not prime.  When n = 3, 11n + 5 = 38 is not prime.  When n = 4, 
11n + 5 = 49 is not prime.  When n = 5, 11n + 5 = 60 is not prime.  
But when n = 6, 11n + 5 = 71 is prime. 
So this is a counter example to 
‘when n is a positive integer, 11n + 5 is not prime’.
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Counter Example continued…..

Let us consider again the above counter example.  It is a counter 
example to the proposition ‘∀n, 11n + 5 is not prime’, where the 
universal set is N.  By our counter example we show that, 
‘∀n, 11n + 5 is not prime’ is false.
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Mathematical Induction

Consider a predicate P(n) where n ∈ N, for which ∀n P(n) is true.  
Then P(1) is true ------ (1).
Also, for any n ∈ N, P(n) ⇒ P(n + 1) is true ------(2) 
since for any n ∈ N, P(n), P(n + 1) are true. 

Now, (1) and (2) are sufficient for ∀n, P(n) to be true.
Let us see why it is so.
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Mathematical Induction continued….

P(1) is true --------(1)
For any n ∈ N, P(n) ⇒ P(n + 1) is true ------(2)
From (1) and (2), we get P(2) is true 
(Since P(1) is true and P(1) ⇒ P(2) is true)
Therefore, P(3) is true (Since P(2) is true and P(2) ⇒ P(3) 

is true).
Therefore P(4) is true (Since P(3) is true and P(3) ⇒ P(4) 

is true).
Proceeding this way we get for any n ∈ N, P(n) is true.  

This is 
called the principle of mathematical induction.    
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Mathematical Induction continued…..

We can apply the principle of mathematical induction to situations 
which are slightly different from the above situation.  We give an 
example of this.

Consider the predicate n2 > 2n + 1 where n ∈ N. 
When  n = 1, 2,  n2 > 2n +1 is false, but when n ≥ 3, n2 > 2n + 1 is 
true; i.e., ∀n, n ≥ 3 ⇒ n2 > 2n + 1 is true.  
Let us prove this by the principle of mathematical induction.
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Mathematical Induction continued…..

When n = 3, n2 = 9 and 2n + 1 = 7.  
Therefore when n = 3, n2 > 2n + 1.
Suppose n ∈ N and n ≥ 3.
Suppose n2 > 2n + 1.
Then, (n + 1)2 = n2 + 2n + 1 > 2n + 1 + 2n + 1 ( since n2 > 2n + 1).
But 2n + 1 > 2.
Therefore (n + 1)2 > 2n + 1 + 2.
Therefore (n + 1)2 > 2(n + 1) + 1.
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Mathematical Induction continued…..

For n ∈ N, let us denote n2 > 2n + 1 by P(n).  
Then we have, P(n) ⇒ P(n + 1) whenever n ∈ N and n ≥ 3.
So we have P(3) is true ------(1)
and P(n) ⇒ P(n + 1) whenever n ∈ N and n ≥ 3 ------(2).
From (1) and (2) we get P(3), P(4), P(5)…. are all true.  
So, we have ∀n, n ≥ 3 ⇒ P(n) is true.
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