
BOOLEAN ALGEBRA



Learning Outcomes

At the end of this lesson students will be able to:

I. use the laws of Boolean algebra as they apply to sets;
II. manipulate Boolean-valued expressions
III. simplify Boolean expressions;
IV. investigate de Morgan's laws
V. apply mathematical knowledge and skills in a problem 

solving context.



Introduction

The most obvious way to simplify Boolean expressions is to 
manipulate them in the same way as normal algebraic 
expressions are manipulated. With regards to logic relations 
in digital forms, a set of rules for symbolic manipulation is 
needed in order to solve for the unknowns.

A set of rules formulated by the English mathematician 
George Boole describe certain propositions whose outcome 
would be either true or false. 



Basic Definitions

Let B be a non empty set with two binary operations + and *, 
a unary operation ‘ ,and two distinct elements 0 and 1.Then 
B is called Boolean Algebra if it holds the basic [B1]  to 
[B4]. 

Sometimes we will designate a Boolean algebra by 
‹B,+,*,’,0,1› when we want to emphasize its six parts.

axioms



Axioms 

[B1] Commutative laws:

(1a) a + b = b + a (1b) a * b = b * a

[B2] Distributive laws:

(2a) a + (b * c)=(a + b) * (a + c) (2b) a * (b + c) = (a * b) + (a * c)

[B3] Identity laws:

(3a) a + 0 = a (3b) a * 1 = a

[B4] Complement laws:

(4a) a + a‘ = 1 (4b) a * a‘ = 0

Where a, b, c are any elements in B:



Boolean Operations

• The complement is denoted by a '. It is defined by
• 0' = 1   and   1' = 0.
• The Boolean sum, denoted by + or by OR, 
• has the following values:
• 1 + 1 = 1,    1 + 0 = 1,    0 + 1 = 1,    0 + 0 = 0
• The Boolean product, denoted by . or by * or by AND, 
• has the following values:
• 1 * 1 = 1,    1* 0 = 0,    0 * 1 = 0,    0 * 0 = 0



PrecedencePrecedence

We adopt the usual convention that, unless we are 
guided by parenthesis, ' has precedence over *, and * 
h a s  p r e c e d e n c e   o v e r  + .

Example:

a + b * c means a+ (b * c) and not (a + b) * c

a * b ' means a * ( b ') and not (a * b) '



Duality

The dual of any statement in a Boolean algebra B is the 
statement obtained by changing every AND(*) to OR(+), 
every OR(+) to AND(*) and all 1's to 0's and vice-versa in 
the original statement. 

Example:

The dual of

(1 + a) * (b + 0) = b is    (0 * a) + (b * 1) = b



Principle of Duality

The dual of any theorem in a Boolean algebra is also a 
theorem.

i.e. if any statement is a consequence of the axioms of a 
Boolean algebra, then the dual is also a consequence of 
those axioms since the dual statement can be proven by 
using the dual of each step of the proof of the original 
statement.

Theorem 1:



Basic Theorems
Using the axioms [B1] through [B4], we 
prove the following theorems

Theorem 2: Let a, b, c be any elements in a Boolean Algebra B.
i. Idempotent laws:

(5a) a + a = a (5b) a * a = a

ii. Boundedness laws:

(6a) a + 1 = 1 (6b) a * 0 = 0

iii. Absorption laws:

(7a) a + (a * b) = a (7b) a * (a + b) = a

iv. Associative laws:

(8a) (a + b) + c = a + (b + c) (8b) (a * b) * c = a * (b * c)



Basic Theorems

Theorem 3: Let a be any element of a Boolean algebra B.

i. (Uniqueness of Complement) If a + x =1 and a * x = 0, then 
x = a'.

ii. (Involution law) (a') ' = a.

iii. (9a) 0' = 1 (9b) 1' = 0.



Theorem 4 :

DeMorgan’s laws :

(10a) (a + b)' = a' * b' (10b) (a * b)' = a' + b'

Basic Theorems



Sum of Products Form

Consider a set of variables, say x1,x2,…..,xn. A Boolean 
expression E in these variables, sometimes written 
E(x1,……,xn), is any variables or any expression built up 
from the variables using the Boolean operations +, *, and ‘.

Example:

)'')'''(()'''()''( 21 zxyzxyEandyxxyzzyxE ++=+++=

are Boolean expression in x, y and z.



Sum of Products Form

A literal is a variable  or complemented variable, such as x, x’, 
y, y’, and so on. A fundamental product is a literal or a product of 
two or more literals in which no two literals involve the same 
variable. 

Thus 

xz’ ,      xy’z,     x,     y’,      x’yz

are fundamental products but xyx’z and xyzy are not. Any 
product of literals can be reduced to either 0 or a fundamental 
product, eg., xyx’z=0 since xx’=0 ( ), and 
xyzy=xyz since yy=y ( ).

complement law
idempotent law



Sum of Products Form

A fundamental product P1 is said to be contained in (or 
included in) another fundamental product P2 if the literals of P1
are also literals of P2. For example, x’z is contained in x’yz, 
but x’z is not contained in xy’z since x’ is not a literal of xy’z. 
Observe that if P1 is contained in P2, say P2=P1*Q, then, by 
the ,

P1+P2= P1+P1*Q=P1

Thus for instance, x’z + x’yz = x’z.

absorption law



Sum of Products Form

Definition:
A Boolean expression E is called a sum-of-products
expression if E is a fundamental product or the sum of two or 
more fundamental products none of which is contained in 
another.

Definition:

Let E be any Boolean expression. A sum-of-products form of E is 
an equivalent Boolean sum-of-products expression.



Sum-of-Products Form

Input : Boolean Expression E.

Output : sum-of-products expression equivalent to E.

Step 1 :  Use DeMorgan’s laws and involution to move the  
complement operation into any parenthesis until finally 
the complement operation only applies to variables. 
Then E will consist only of sums and products of 
literals.

Algorithm 1:



Sum-of-Products Form

Step 2 : Use the distributive operation to next transform E
into a sum-of-products.

Step 3 : Use the commutative, idempotent, and complement 
laws to transform each product in E into 0 or a 
fundamental product.

Step 4 : Use the absorption and identity laws to finally 
transform  E into a sum-of-products expression.



Example 1

Express the following Boolean expression E(x,y,z) as a 
sum-of-products form:

)))((())(( ′′+′+′′′= zyzxzxyE
Using DeMorgan’s
laws and involution

Step 1 :

))((
))())(((

yzzxzxy
zyzxzyxE

+′′+=

′′+′+′+′′+′′=

Using the 
distributive laws 

Step 2 : zyzzzxxyyzzxyxE ′+′′++′=



Example 1(cont.)

Using the commutative, 
idempotent and 
complement laws 

Step 3 : 0+′++′= zxxyzzxyE

Using absorption law 
Step 4 : zxyzxzx ′=∗′+′ )(

Using identity law 

zxxyzE ′+=



Complete 

Sum-of-Products Forms

A Boolean expression E=E(x1,x2,…,xn) is said to be a 
complete sum-of products expression if E is a sum-of-
products expression where each product P involves all the 
n variables. Such a fundamental product P which involves 
all the variables is called minterm, and there is a maximum 
of 2n such products for n variables.

Theorem 5: Every non zero Boolean expression
E=E(x1,x2,…,xn) is equivalent to a complete sum-of-products 
expression and such a representation is unique.



Complete 

Sum-of-Products Forms

Algorithm 2:
Input : Boolean sum-of-products Expression    

E=E(x1,x2,…,xn).

Output : Complete sum-of-products expression equivalent to E.

Step 1 : Find a product P in E which does not involve the 
variables xi, and then multiply P by xi+xi’, deleting 
any repeated products.(This is possibe since xi+xi’=1
and P+P=P.)

Step 2 : Repeat step1 until every product P in E is a minimum, 
i.e., every product P involves all the variables.



Example 2

a) Apply algorithm1 to E to obtain

Now E is represented by a sum-of-products 
expression.

b) Apply algorithm2 to obtain

Now E is represented by its complete sum-of-products 
form.

Express E(x,y,z)=x(y’z)’ in its complete sum-of-products 
form

zxxyzyxzyxE ′+=′+=′′= )()(

zyxzxyxyz
zyxzxyzxyxyzyyzxzzxyE

′′+′+=

′′+′+′+=′+′+′+= )()(



Minimal Boolean  Expressions,

Prime Implicants

There are many ways of representing the same Boolean 
expression E. Here we define and investigate a minimal 
sum-of-products form for E. We must also define and 
investigate prime implicants of E since the minimal sum-of-
products involves such prime implicants.



Minimal

Sum-of-Products

E is a Boolean sum-of-products expression. EL denote 
the number of literals in E and ES denote the number of 
summands in E.

Exaple:

Then EL=3+3+4+4=14 and ES=4

yztxtzyxtyxzxyE ′+′′+′′+′=



Minimal

Sum-of-Products

Suppose E and F are equivalent Boolean sum-of-
products expressions. We say E is simpler than F if:

(i)  EL < FL and ES ≤ FL or (ii)  EL ≤ FL and ES < FL

We say E is minimal if there is no equivalent sum-of-
products expression which is simpler than E.



Prime Implicants

A fundamental product P is called a prime implicant of a 
Boolean expression E if  P + E = E

But no other fundamental product contained in P has 
this property.

Example: E= xy’ + xyz’ + x’yz’

One can show that:

xz’ + E = E but    x + E ≠ E and    z’ + E ≠ E

Thus xz’ is a prime implicant of E.



Prime Implicants

Theorem 6: A minimal sum-of-products form for a Boolean 
expression  E is a sum of prime implicants of E.



Consensus of Fundamental 
Products

Let P1 and P2 be fundamental products such that exactly 
one variable, say xk, appears uncomplemented in one of 
P1 and P2 and complemented in the other. Then the 
consensus of P1 and P2 is the product (without repetition) of 
the literals of P1 and the literals of P2 after xk and xk’ are 
deleted. (We do not define the consensus of P1=x and 
P2=x’.) 

Lemma: Suppose Q is the consensus of P1 and P2. 

Then P1+P2+Q=P1+P2



Example 3

Find the consensus Q of P1 and P2 Where:

a) P1 = xyz’ and P2 = xy’t.

Delete y and y’ and then multiply the literals of P1 and P2
(without repetition) to obtain Q = xz’st.

b) P1= xy’ and P2=y.

Deleting y and y’ yields Q=x.



Example 3 (cont.)

c) P1=x’yz and P2=x’yt.
No variables appears uncomplemented in one of the 

products and complemented in the other. Hence P1
and P2 have no variables.

d) P1=x’yz and P2=xyz’.
Each of x and z appear complemented in one of the 

products and uncomplemented in the other. Hence 
P1 and P2 have no consnsus.



Consensus Method for 
Finding Prime Implicants

Algorithm 3 (Consensus Method) :

Input : Boolean sum-of-products Expression    
E=P1+P2+…..+Pm where the Ps are 

fundamental products.

Output : E as a sum of its prime implicants.

Step 1 : Delete any fundamental product Pi which includes 
any other fundamental product Pj.(permissible by the 
absoption law.)



Consensus Method for 
Finding Prime Implicants

Step 2 : Add the consensus of any Pi and Pj providing Q does 
not include any of the Ps.(permissible by Lemma.)

Step 4 : Repeat step1 and/or step 2 until neither can be 
applied. 

Theorem 7: The consensus method will eventually stop,
and then E will be the sum of its prime implicants.



Example 4

'''''
''''

''''''
''''

'''''
'''''

yzyxxyzx
yxxyzx

yxxyzyxzx
xyzyxzx

xyzyxxyzyxxyz
zyxxyzzxxyzE

+++=
++=

+++=
++=

++++=
+++=

Let

(x’yz’ includes x’z’)

(consensus of xyz and xyz’)

(xyz and xyz’ includes xy)

(consensus of x’z’ and x’y’z)

(x’y’z includes x’y’)

(consensus of x’z’ and xy)

'.'''''' yzxzyxxyzzxxyzE ++++=
Then:



Minimal Sum-of-Products 
Form

Algorithm 4 :
Input : Boolean Expression  E=P1+P2+…..+Pm where the Ps 

are the prime implicants of E.

Output : E as a minimal sum-of-products.

Step 1 : Express each prime implicant P as a complete sum-
of-products.

Step 2 : Delete one by one those prime implicants whose 
summands appear among the summands of the 
remaining prime implicants.



Example 5

Let ''''' yzyxxyzxE +++=
Where E is expressed as the sum of all its prime implicants.

Step 1:

Step 2: the summands of x’z’ are x’yz and x’y’z’ which appear 
among the other summands. Thus delete x’z’ to obtain

''')'(''
''''')'(''''

')'(
''''')'(''''

yzxxyzxxyzyz
zyxzyxzzyxyx

xyzxyzzzxyxy
zyxyzxyyzxzx

+=+=
+=+=

+=+=
+=+=

''' yzyxxyE ++=



The End


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

